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Best Approximations in Cone Metric Spaces

Sh. Rezapour

Abstract. Huang and Zhang defined cone metric spaces in 2007 ([1]). We
shall give some results about characterization of best approximations in the
cone metric spaces.

1. Introduction

Approximation theory has been investigated by many authors, and one can
see the known book of Singer for a brief history of approximation theory ([8]).
Recently, non-convex analysis has found some applications in optimization theory
and approximation theory has special place in mathematics and so in non-convex
analysis. In this way, Huang and Zhang defined the cone metric spaces in 2007
([1]). At present, work on approximation theory is continued. For example,
there are some works about best approximation, ε-best approximation and best
simultaneous approximation in normed spaces, ordered normed spaces, 2-normed
spaces and generalized 2-normed spaces ([2]-[7]).

Let E be a real Banach space and P a subset of E. P is called a cone if
(i) P is closed, non-empty and P 6= {0},
(ii) ax + by ∈ P for all x, y ∈ P and all non-negative real numbers a, b,
(iii) P ∩ (−P ) = {0}.

For a given cone P ⊆ E, we can define a partial ordering ≤P with respect to
P by x ≤P y if and only if y − x ∈ P . In what follows we omit the index P and
write everywhere ≤ instead of ≤P . x < y will stand for x ≤ y and x 6= y, while
x ≪ y will stand for y − x ∈ intP , where intP denotes the interior of P .

The cone P is called normal if there is a number K > 0 such that 0 ≤ x ≤ y

implies ‖x‖ ≤ K‖y‖, for all x, y ∈ E.
In the following we always suppose that E is a Banach space, P is a cone in E

with intP 6= ∅ and ≤ is partial ordering with respect to P .

Definition 1.1. Let X be a non-empty set, E a Banach space and P a cone in
E. Suppose the mapping d : X × X → E satisfies
(d1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y,
(d2) d(x, y) = d(y, x) for all x, y ∈ X,
(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.
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Then d is called a cone metric on X, and (X, d) is called a cone metric space
([1]).

Example 1.2. Let E = R2, P = {(x, y) ∈ E : x, y ≥ 0}, X = R and d : X×X →
E defined by d(x, y) = (|x− y|, α|x− y|), where α ≥ 0 is a constant. Then (X, d)
is a cone metric space ([1]).

Example 1.3. Let E = ℓ1, P = {{xn}n∈N ∈ E : xn ≥ 0, for all n}, (X, ρ) a

metric space and d : X ×X → E defined by d(x, y) = {ρ(x,y)
2n }n∈N. Then (X, d) is

a cone metric space.

Definition 1.4. ([1]) Let (X, d) be a cone metric space, x ∈ X and {xn}n∈N a
sequence in X. Then
(i) {xn}n∈N converges to x whenever for every c ∈ E with 0 ≪ c there is a natural
number N such that d(xn, x) ≪ c for all n ≥ N . We denote this by limn→∞ xn = x

or xn → x.
(ii) {xn}n∈N is a Cauchy sequence whenever for every c ∈ E with 0 ≪ c there is
a natural number N such that d(xn, xm) ≪ c for all n, m ≥ N .
(iii) (X, d) is a complete cone metric space if every Cauchy sequence is convergent.

Here we point to some elementary results of [1]. Let (X, d) be a cone metric
space, P a normal cone with normal constant K, x ∈ X and {xn}n∈N a sequence
in X. Then
(i) {xn}n∈N converges to x if and only if d(xn, x) → 0.
(ii) Limit point of every sequence is unique.
(iii) Every convergent sequence is Cauchy.
(iv) {xn}n∈N is a Cauchy sequence if and only if d(xn, xm) → 0 as n, m → ∞.
(v) If xn → x and x′

n → x′, then d(xn, x′
n) → d(x, x′) as n → ∞.

Definition 1.5. Let (X, d) be a cone metric space and B ⊆ X. If every se-
quence in B has a convergent subsequence to an element of B, then B is called a
sequentially compact subset of X.

Definition 1.6. Let (X, d) be a cone metric space, G a non-empty subset of
X and x ∈ X. We say that g0 ∈ G is a best approximation of x whenever
d(x, g0) ≤ d(x, g) for all g ∈ G. Then, we denote the set of all best approximations
of x in G by PG(x).

Definition 1.7. Let (X, d) be a cone metric space and G a non-empty subset of
X. We say that G is a Chebyshev subset of X if PG(x) is a singleton subset of G

for all x ∈ X. Also, we say that G is a quasi Chebyshev subset of X if PG(x) is
sequentially compact subset of X for all x ∈ X.

Definition 1.8. Let X be a real vector space, (X, d) a cone metric space and G

a non-empty subset of X. We say that G is a pseudo Chebyshev subset of X if
there is no x ∈ X such that PG(x) contains infinitely many linearly independent
elements.
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Example 1.9. Let E = ℓ1, P = {{xn}n∈N ∈ E : xn ≥ 0, for all n}, (X, ‖.‖) a
normed space, G a quasi Chebyshev subset of X and d : X × X → E defined by

d(x, y) = {‖x−y‖
2n }n∈N. Then, G is a quasi Chebyshev subset of (X, d).

2. Main Results

Now we are ready to state our main results.

Lemma 2.1. Let (X, d) be a cone metric space, G a non-empty subset of X,

g0 ∈ G and x ∈ X. Then, g0 ∈ PG(x) if and only if there exists a function

f : X → E such that f(g0) = d(x, g0), fg0
(g) := f(g) − f(g0) ∈ P and fd(g) :=

d(x, g) − f(g) ∈ P for all g ∈ G.

Proof. First suppose that there exists a function f : X → E such that f(g0) =
d(x, g0), fg0

(g) ∈ P and fd(g) ∈ P for all g ∈ G. Since fg0
(G) ⊆ P and fd(G) ⊆ P ,

f(g0) ≤ f(g) and f(g) ≤ d(x, g) for all g ∈ G. Thus, d(x, g0) = f(g0) ≤ f(g) ≤
d(x, g) for all g ∈ G. Hence, g0 ∈ PG(x).
For the converse part, define f : X → E by f(t) = d(x, t). Then, f(g0) = d(x, g0),
fg0

(G) ⊆ P and fd(G) = {0} ⊆ P . �

Theorem 2.2. Let (X, d) be a cone metric space, G a non-empty subset of X

and x ∈ X. Then, M ⊆ PG(x) if and only if there exists a function f : X → E

such that f(m) = d(x, m), fm(G) ⊆ P and fd(G) ⊆ P for all m ∈ M .

Proof. First suppose that there is a function f : X → E such that f(m) = d(x, m),
fm(G) ⊆ P and fd(G) ⊆ P for all m ∈ M . Then by Lemma 2.1, m ∈ PG(x) for
all m ∈ M . Hence, M ⊆ PG(x).
For the converse part, take an arbitrary element m1 ∈ M . By Lemma 2.1, there is
a function f : X → E such that f(m1) = d(x, m1), fm1

(G) ⊆ P and fd(G) ⊆ P .
Let m ∈ M . Then, fm1

(m) ∈ P and fd(m) ∈ P . Since m ∈ PG(x), d(x, m) ≤
d(x, m1) ≤ f(m) ≤ d(x, m). Hence, f(m) = d(x, m). Also,

fm(g) = f(g) − f(m) = f(g) − d(x, m) = f(g) − d(x, m1) = fm1
(g) ∈ P

for all g ∈ G. Therefore, f is the desired function. �

Corollary 2.3. Let (X, d) be a cone metric space and G ⊆ X. Then, G is a

Chebyshev subset of X if and only if there don’t exist x ∈ X, distinct elements

g1, g2 ∈ G and a function f : X → E such that f(gi) = d(x, gi), fgi
(G) ⊆ P and

fd(G) ⊆ P for i = 1, 2.

Theorem 2.4. Let (X, d) be a cone metric space and G ⊆ X. Then, G is quasi

Chebyshev subset of X if and only if there don’t exist x ∈ X, a sequence {gn}n∈N

in G without a convergent subsequence and a function f : X → E such that

f(gn) = d(x, gn), fgn
(G) ⊆ P and fd(G) ⊆ P for all n ∈ N.

Proof. First suppose that there exist x ∈ X, a sequence {gn}n∈N in G without a
convergent subsequence and a function f : X → E such that f(gn) = d(x, gn),
fgn

(G) ⊆ P and fd(G) ⊆ P for all n ∈ N. Then by Theorem 2.2, gn ∈ PG(x) for
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all n ∈ N. It follows that PG(x) is not sequentially compact.
For the converse part, suppose that G is not quasi Chebyshev subset of X. Then,
there exist x ∈ X and a sequence {gn}n∈N in PG(x) without a convergent sub-
sequence. By Theorem 2.2, there exists f : X → E such that f(gn) = d(x, gn),
fgn

(G) ⊆ P and fd(G) ⊆ P for all n ∈ N. �

The proof of the following Theorem is similar to that of Theorem 2.4.

Theorem 2.5. Let X be a real vector space, (X, d) a cone metric space and

G ⊆ X. Then, G is pseudo Chebyshev subset of X if and only if there don’t

exist x ∈ X, infinitely many linearly independent elements {gn}n∈N in G and a

function f : X → E such that f(gn) = d(x, gn), fgn
(G) ⊆ P and fd(G) ⊆ P for

all n ∈ N.
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